Глава 5 Решение задач линейного программирования в OpenOffice.org

Calc

В настоящей главе мы изучим возможности пакета OpenOffice.org Calc при решении задач линейного программирования.

<u>ПРИМЕР 5.1.</u> Решить задачу линейного программирования:

 $L=5x_{1}-2x_{3} \rightarrow min$ -5x_{1}-x_{2}+2x_{3} < 2 -x_{1}+x_{3}+x_{4} < 5 -3x_{1}+5x_{4} < 7

Для решения подобных задач в OpenOffice.org Calc предназначена команда Поиск решения из меню Сервис.

В случае если этот пункт подменю отсутствует, необходимо просто установить расширение scsolver.uno.oxt (http://kohei.us/ooo/solver). Последняя версия Solver (от 28 ноября 2007 года) позволяет решать задачи как линейного, так и нелинейного программирования. Эта версия стала более стабильной, кроме того появилась поддержка русского языка. Для этого выполните команду в окне OpenOffice.org Calc **Сервис Управление расширениями...**, затем щелкните на кнопку **Добавить** (см. рис. 5.1), и отыщите в вашей файловой системе файл scsolver.uno.oxt (см. рис. 5.2). Нажатие на кнопку **Открыть** приведет к автоматической установке расширения. Однако для того, чтоб начать его использовать, нужно закрыть и снова запустить OpenOffice.org Calc.

	Управление р	асширениями		_ 🗆 🔀
Просмотр расширений				
Расширение		Версия	Статус	Добавить
🗉 📼 Мои расширения				
🗄 🖃 Расширения OpenOf	lice.org			<u>У</u> далить
				<u>Р</u> азрешить
				<u>З</u> апретить
				<u>Э</u> кспорт
				Обновления
				Параметры
Загрузить расширения			Закрыть	<u>С</u> правка

Рис. 5.1

Пусть значения x₁, x₂, x₃, x₄ хранятся в ячейках A1:A4. А значение функции L в ячейке C1. Введем ограничения:

C2 =-5*A1-A2+2*A3 C3=-A1+A3+A4 C4=-3*A1+5*A4.

	Добавить расц	ирение	
📄 📢 🏦 katya Докуми	енты		
<u>М</u> еста	Имя	•	Изменён 📥
🔍 Поиск	Dpen Calc		Сегодня в 16:33
🚱 Последние	scsolver.uno.oxt		16.01.2008
🏫 katya	🚺 Тема1		Вчера в 14:20
[Рабочий стол	1 Тема2.ods		Вчера в 18:44
🔜 Файловая система	🔻 🚺 Тема3.ods		Сегодня в 13:39 👻
🕂 Добавить 📃 Удалит	ъ	Все файлы	\$
Тип файла			
		О <u>т</u> менит	ъ

Рис. 5.2

Таким образом, мы задали условие исходной задачи линейного программирования.

Выполним команду из главного меню **Сервис→Поиск решения**, появится окно **Оптимальное решение**, представленное на рис. 5.3.

Р Оптимальное решение	×
Определить модель Целевая функция Цель <u>М</u> аксимум Минимұм Параметры функции	<u>Р</u> ешить <u>С</u> брос <u>Н</u> астройки
Ограничения значений параметров Добавить Изменить Уда <u>л</u> ить	Со <u>х</u> ранить <u>З</u> агрузить
	Закр <u>ы</u> ть

Рис. 5.3

Устремим целевую функцию в ячейке C1 к минимуму. Для этого введем в поле Целевая функция введем ячейку C1 и установим опцию Минимум. В поле Параметры функции необходимо указать адреса ячеек, в которых хранятся изменяемые значения. В нашем случае это ячейки A1:A4.

Для добавления ограничений необходимо щелкнуть по кнопке **Добавить**, появится диалоговое окно **Ограничение** (рис. 5.4). В поле ввода **Ячейка** необходимо ввести адрес ячейки, где хранится ограничение, затем, щелкнув по стрелке, выбрать знак и ввести конкретное значение ограничения в поле **Ограничение**. Щелчок по кнопке **ОК** означает ввод очередного ограничения и возврат к диалоговому окну **Оптимальное решение**.

2	Ограничение	×
<u>Я</u> чейка	<u>О</u> граничение	
\$Лист13.\$С\$2	<= ↓ 2	
<u>о</u> к	Отмена	
	D 5 4	

Рис. 5.4

В нашем случае окно будет иметь вид, изображенный на рис. 5.5. Щелчок по кнопке **Решить** начнет процесс решения задачи, который завершится появлением системного диалогового окна, сообщающего, что решение найдено.

	Оптимальное решение	×
Определить модель — Целевая функция Цель <u>Ма</u> Параметры функции	\$Лист13.\$С\$1 ксимум Минимум \$Лист13.\$А\$1:\$А\$4	<u>Р</u> ешить <u>С</u> брос <u>Н</u> астройки
\$Лист13.\$С\$2 <= 2 \$Лист13.\$С\$3 <= 5 \$Лист13.\$С\$4 <= 7	Доб Изм Уда	авить Со <u>х</u> ранить енить <u>З</u> агрузить <u>л</u> ить
		Закр <u>ы</u> ть

Рис. 5.5

Щелчок по кнопке **OK** приведет к появлению в ячейке C1 значения целевой функции L, а в ячейках A1:A4 значений переменных x_1 - x_4 , при которых целевая функция достигает минимального значения.

Итак, назначение основных кнопок и окон диалогового окна Оптимальное решение:

- Поле Целевая функция определяет целевую ячейку, значение которой необходимо максимизировать или минимизировать, или сделать равным конкретному значению.
- Опции Максимум и Минимум определяют, что необходимо сделать со значением целевой ячейки максимизировать, минимизировать или сделать равным конкретному значению.
- Поле Параметры функции определяет изменяемые ячейки. Изменяемая ячейка это ячейка, которая может быть изменена в процессе поиска решения для достижения нужного результата.
- Окно Ограничения значений параметров перечисляет текущие ограничения в данной задаче. Ограничение есть условие, которое должно удовлетворяться решением; ограничения перечисляются в виде ячеек или интервалов ячеек, обычно содержащих формулу, которая зависит от одной или нескольких изменяемых ячеек, чье значение должно попадать внутрь определенных границ или удовлетворять равенству.
- Кнопки Добавить, Изменить, Удалить позволяют добавить, изменить или удалить ограничение.

- Кнопка Решить запускает процесс решения определенной задачи.
- Кнопка Закрыть закрывает окно диалога Оптимальное решение, не решая проблемы.
- Кнопка Сброс очищает все текущие установки задачи и возвращает все параметры к их значениям по умолчанию.
- Кнопка Настройки выводит окно диалога, в котором можно контролировать различные аспекты процесса отыскания решения (см. рис. 5.6).

2	Настройки	×
Настройки		
Линейная модель		
<u>Т</u> олько положите	льные значения	
Только целые зна	чения	
	ОК	Отмена

Рис. 5.6

С помощью решающего блока можно решить множество различный оптимизационных задач (задач на максимум и минимум) с ограничениями любого типа. При решении задачи целочисленного программирования необходимо добавить ограничение, показывающее, что переменные целочисленные. При решении других оптимизационных задач вводят целевую функцию и ограничения.